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Abstract. Golden Ten is an observation game which is played with a small ball rolling down in a large bowl. This
paper describes the motion of the ball in the bowl by means of a deterministic mechanical model, which leads
to a set of ordinary second-order differential equations. A first impression of the solution is obtained through a
numerical approximation, based on some preliminary estimates. Part of the solution is computed exactly, yielding a
simple estimation procedure for the coefficient of air friction, which is one of the two main parameters controlling
the system (the other parameter is the angle of inclination). An asymptotic solution method eventually leads to an
approximate explicit solution, describing the motion of the ball as an elliptical spiral. One of the conclusions is a
simple prediction strategy.

Key words: asymptotic power series, equation of motion, multiple scales, nonlinear differential equation, obser-
vation game.

1. Introduction

Golden Ten is a modified version of Roulette. The game is played with a small ball moving in
a relatively large drum, at the bottom of which there is a ring with numbered compartments.
The main differences with Roulette are that the drum is in fact a smooth, conic bowl in which
the ball smoothly spirals down, and secondly that the players do not have to stake before the
ball has reached a certain level. Although the players cannot control the motion of the ball, it
is claimed that the possibility to observe part of the ball’s orbit enables them to make a better
than random guess on the outcome. This would imply that Golden Ten is a game of skill,
rather than a game of chance.

The main attributes of the game are a small solid ball, made of ivory-like synthetic material,
and a big, slightly grooved, uncoated metal drum; Figures 1 and 2 respectively show a top-
and a side-view of the drum. At the beginning of the game, the ball is launched from a slit
plastic arm at the upper rim of the drum. After rolling a few rounds alongside of the rim, the
ball gradually spirals down the drum, towards a ring with twenty-six numbered, equally large
compartments. On the surface of the drum two concentric circles have been drawn (as shown
in Figure 1). The upper circle is called the observation ring, the lower one is the limit ring.
The players start betting – on one or more possible outcomes – when the ball reaches the
observation ring, and the betting must be stopped at the limit ring.

This paper employs a mechanical model to describe the motion of the ball in the drum. The
model results in a set of second-order, ordinary differential equations, with a corresponding set
of theoretical initial conditions. An exact analytical solution to this system of equations is not
available, but a numerical solution based on preliminary estimates from [1], complemented
with an asymptotic approximation based on the small values of the system parameters, provide
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Figure 1. The Golden-Ten drum; top-view.

Figure 2. The Golden-Ten drum; side-view.

ample information on the characteristics of the solution. One of the results is a parametrization
of the trajectory of the ball as an elliptical spiral, moving down from the rim towards the apex
of the drum. This clearly perceptible pattern leads to a simple prediction strategy, of which the
yield depends on the validity of the assumptions in the – deterministic – mechanical model.

The system of differential equations can be rewritten in terms of new variables, after which
one of the equations directly leads to an exact analytical result. This result provides a means to
accurately estimate the unknown value of one of the model parameters, namely the coefficient
of air friction. Future research will hopefully render estimates of the remaining unknown
values. By then, the analytical results from the current paper – including the asymptotic power
series – will serve as a basis for a close comparison of the theoretical solution to empirical data,
as supplied by [1]. As has already been indicated by previous research in [2], this comparison
will probably lead to an extension of the mechanical model with random factors, the nature
of which will have to be determined through further research.
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2. The mechanical model

The most natural model to describe the motion of the ball is a three-dimensional rigid-body
model, but, before such a model can be constructed, we have to make some basic assumptions:

(a) the ball is a uniform sphere;
(b) the drum is rotationally symmetric;
(c) the surface of the drum – including that of the rim – is so smooth that the ball rolls without

bouncing, but on the other hand so rough that the ball (after two or three revolutions along
the rim) rolls without slipping;

(d) the motion of the ball is completely deterministic, i.e. no random factors are included.

No assumptions are made for the – preferably – horizontal position of the drum, i.e. we allow
for a slightly tilted position. We denote the angle over which the drum is tilted with �. The
radius of the ball is a, that of the rim isRrim, whereasRnum denotes the radius of the numbered
ring. The angle of inclination of the conical drum surface is � (as in Figure 2). Note that
0 < �� �=2 and 0 6 � � �:

We introduce a moving rectangular coordinate system fOe1e2e3g to describe the motion
of the ball on the surface of the drum (see Figures 3 and 4). The origin O coincides with the
apex of the drum, e1 points in the direction from O to P (being the point of contact between
the ball and the drum) and e3 is parallel to the drum surface normal in P . The rotation of the
three coordinate axes can thus be written as

_ei =
d
dt

ei = 
 � ei; (1)

where
 represents the angular velocity. Calling ' the angle of rotation of e1 about the central
axis of the drum, we obtain


 = _' sin� e1 + _' cos� e3: (2)

The position xo of the centre of the ball o, with respect to O, can be described by

xo = re1 + ae3; (3)

where r is the distance from O to P . The velocity vo of o is the time derivative of xo, so it
equals

vo = _xo = _re1 + r _e1 + a _e3: (4)

By substituting (1) in (4), and introducing

R = r cos�� a sin�; (5)

we obtain

vo = _re1 + (r _' cos�� a _' sin�)e2 =
_R

cos�
e1 +R _'e2: (6)
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Figure 3. The moving frame fOe1e2e3g; top-view.

Figure 4. The moving frame fOe1e2e3g; side-view.

Likewise, the acceleration of o is

_vo =
�R

cos�
e1 +

_R

cos�
_e1 + _R _'e2 +R �'e2 +R _'_e2

=

 
�R

cos�
�R _'2 cos�

!
e1 + (R �'+ 2 _R _')e2 +R _'2 sin�e3: (7)

According to assumption c, the ball purely rolls; hence the instantaneous velocity vP of P
is zero. With ! denoting the angular velocity of the ball, this implies

0 = vP = vo + ! � (�ae3): (8)
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Substitution of (6) in (8) yields

! = �
R _'

a
e1 +

_R

a cos�
e2 + _ e3; (9)

where _ denotes the third component of !, which is called the spin. We obtain the time
derivative of ! by differentiating (9), and substituting (1) in the result

_! = �
_R _'+R �'

a
e1 �

R _'

a
_e1 +

�R

a cos�
e2 +

_R

a cos�
_e2 + � e3 + _ _e3

= �
R �'+ 2 _R _'

a
e1 +

 
�R�R _'2 cos2 �

a cos�
� _' _ sin�

!
e2 +

 
_R _' tan�
a

+ � 

!
e3: (10)

The equations of motion are implicitly contained in the law of momentum and that of
moment of momentum (consult e.g. [3], Ch. 8). With m representing the mass of the ball, and
F the total force acting on the ball, the first law reads

m _vo = F (11)

and the second states

I _! = M; (12)

with I representing the central moment of inertia – so I = 2
5ma

2 – and M being the momentum
about o. Before we can elaborate these equations by writing them out in components in the
fOe1e2e3g system, we must first specify F and M. Four distinct forces act on the ball: the
normal force Fn, the frictional force (or dry friction) Fd, the resistive force Fa (due to air
friction) and the gravitational force Fg. These forces combine into

Fn + Fd + Fa + Fg = F: (13)

Note that the forces Fn;Fa and Fg act in o, whereas the line of action for Fd is through P , in
the e1e2-plane. Hence only Fd contributes to the momentum about o.

The normal force can simply be written as

Fn = Ne3; (14)

whereN is a nonnegative scalar. Likewise, the frictional force – which is tangent to the drum
surface in P – is given by

Fd = D1e1 +D2e2: (15)

The resistive force Fa is due to the air friction the ball experiences on account of the translation.
Since this force is directed opposite to vo and its magnitude depends on vo, we write

Fa = �F(vo)vo = �F(vo)

 
_R

cos�
e1 +R _'e2

!
; (16)
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where F(vo) is a simple function of

vo = kvok =
q
( _R cos�1 �)2 + (R _')2; (17)

somewhere in between a constant and a linear function. In case of a freely moving sphere, and
for high Reynolds numbers, the friction force is a pure pressure drag. This drag is quadratic
in vo and of the order of 1

2�Vo
2Cd �a

2, where � is the density of air, Vo a characteristic
velocity, and Cd the drag coefficient, with Cd � 1 (cf. [4], Sect. 1.5, or [5], Sect. 40). For
Vo � 0�5 m=sec; � � 1�2 kg=m3; and a = 0�0175 m, this yields a magnitude for Fa of about
1�5 � 10�4 N. This is, at least in order of magnitude, in correspondence with values of the
resistive force found in our experiments (see Section 3), which are of the order of 3�10�4 N. A
linear viscous model, for low Reynolds numbers, would (cf. [4], Sect. 7.6) yield Fa � �VoaCd

(�: viscosity of air), which is of the order of 10�7, and thus much lower than the observed
values. In the light of our experimental results we favour the quadratic model (yielding a linear
F(vo)), although the ball is not free here, but rolls over a solid surface. However, the range
of velocities traversed in practice is limited, and a linear model (having constant F(vo)) will
probably also suffice. In Section 3 we will consider both options, and compare the results.

Considering the gravitational force, we know that it would be directed along the central
axis of the drum if the position of the drum were exactly horizontal (the ideal case). We here
assume that the drum is tilted about a small angle �, and that the plane of inclination is rotated
about an angle '� – with '� 2 [0; 2�) – so that Fg takes the form

Fg = � mg(cos('� '�) cos� sin� + sin� cos�)e1 +mg sin('� '�) sin �e2

+ mg(cos('� '�) sin� sin� � cos� cos�)e3; (18)

where g represents the acceleration of gravity. Since � is extremely small, the component of
the gravitational force in the plane of the drum is of the order Fg � mg sin� � 3� 10�2 N,
whereas the order of the centrifugal force is Fc � mVo

2=R � 2 � 10�2 N. Hence, Fg and
Fc are of the same order of magnitude, but Fa = kFak is much smaller than both Fg and Fc.
Hence it is possible to introduce a small parameter in the form of the quotient of Fa and either
Fg or Fc. We will return to this subject in Section 4.

The last term to be expressed in fe1e2e3g coordinates is the total momentum M, where M
is composed of two parts: the momentum Md caused by the frictional force Fd, and the rolling
resistance Mr which is assumed to be proportional to the spin (rolling resistance due to the
in-plane rotations !1 and !2 is neglected). So

M = Md + Mr (19)

with

Md = �ae3 � Fd = aD2e1 � aD1e2 (20)

and

Mr = �Ih _ e3; (21)

where h is a friction coefficient. From (3), (6) and (9), we find that the motion of the ball
is completely determined by the three variables R;' and _ . By writing (11) and (12) out in
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components in the fOe1e2e3g system, and by eliminating the unknowns N;D1 and D2, we
obtain (with f(vo) denoting F(vo)=m)

�R = �
5
7
f(vo) _R +R _'2 cos2 �+

2a
7

_' _ cos� sin�

�
5g
7

cos�(cos� sin� cos('� '�) + sin� cos�);

�' = �
5
7
f(vo) _'� 2R�1 _R _'+

5g
7
R�1 sin� sin('� '�);

� = �h _ �
1
a
_R _' tan�:

(22)

The above system of differential equations is to be completed with a set of initial conditions.
We derive these conditions by again using assumption c: when the ball is rolling along the rim
(see Figure 5), we know that the instantaneous velocity vQ of Q (being the point of contact
between rim and ball) is equal to zero, hence

0 = vQ = vo + ! � a(cos�e1 � sin�e3): (23)

By substituting equations (6) and (9) in (23), we find

0 =
_R(1� sin�)

cos�
e1 + fa _ cos�+R _'(1� sin�)ge2 � _Re3: (24)

At t = 0 the ball leaves the rim; from (24) we conclude that at this time the ball momentarily
moves in a circular orbit ( �R(0) = _R(0) = 0), with radius R(0) = Rrim � a. Furthermore we
may choose '(0) arbitrarily, so we have '(0) = '0. To find _'(0) and _ (0), we combine the
second component in (24) with the first equation in (22), whence

R(0) = Rrim � a; _R(0) = 0;

'(0) = '0; _'(0) =

s
5g(sin� cos� + cos� sin� cos('0 � '�))

R(0)(7 cos�� 2 tan�(1� sin�))
; (25)

_ (0) = �
1� sin�
a cos�

R(0) _'(0):

At this point we have derived a system of three nonlinear second-order differential equations,
and a corresponding set of initial conditions. This system, represented by (22) and (25),
completely determines the motion of the ball in the drum. But, unfortunately, it does not seem
to admit any standard analytical solution method.

3. Numerical solutions

Any system of second-order differential equations can be rewritten as a system of first-order
differential equations by introducing some additional variables. To this end, we define

x1 = R; x2 = _R; x3 = '� '�; x4 = _'; x5 = _ (26)
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Figure 5. The ball rolling along the rim.

and regard these variables as components of the five-vector

x(t) = (x1(t); x2(t); x3(t); x4(t); x5(t)): (27)

With these new variables, the equations of motion in (22) can be rewritten as

_x1 = x2;

_x2 = �
5
7
f(vo)x2 + x1x4

2 cos2 �+
2a
7
x4x5 cos� sin�

�
5g
7
(cos� sin� cosx3 + sin� cos�) cos�;

_x3 = x4;

_x4 = �
5
7
f(vo)x4 � 2x1

�1x2x4 +
5g
7
x1
�1 sin� sinx3;

_x5 = �hx5 �
1
a
x2x4 tan�;

(28)

where

vo =
q
(x2 cos�1 �)2 + (x1x4)2: (29)

Likewise, with

x0i = xi(0); i 2 f1; : : : ; 5g; (30)
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the initial conditions in (25) can be transformed into

x01 = Rrim � a; x02 = 0;

x03 = 0; x04 =

s
5g(sin� cos� + cos� sin�)
(7 cos�� 2 tan�(1� sin�))

x01
�1=2;

x05 = �
1� sin�
a cos�

x01x04;

(31)

where the value of '0 � '� has been set to zero, for the sake of simplicity. We can solve this
type of differential equation by using a Runge-Kutta method. We choose the numerical values
of the system parameters in (28) and (31) as follows. Since the positioning of the Golden-Ten
table must be done very carefully, the position of the drum will be close to horizontal, leaving
at most a very small value for �. Therefore we will, in our present calculations, assume

� = '� = 0: (32)

The dimensions of the drum and the ball are supplied by [1], from which we obtain

m = 0�0383 kg; a = 0�0175 m; (33)

Rrim = 0�487 m; Rnum = 0�205 m; � = 0�0831 rad (34)

and

g = 9�81 m=sec2: (35)

The values (32–35) lead to the following initial conditions

x01 = 0�470 m; x02 = x03 = 0;

x04 = 1�13 rad=sec; x05 = �28 rad=sec:
(36)

This leaves us with the unknown friction coefficient h and the unknown friction function f .
As a start, we neglect the resistive force due to spin1, thus assuming

h = 0: (37)

As was already explained in Section 2, we have two options for the air resistance: a resistive
force directly proportional to the speed vo, in which case

f(vo) = fl; (38)

or a purely quadratic model, implying

f(vo) = fqvo: (39)

1 It seems to us that this point needs further study. We plan to do this in subsequent work, but for the time being
we leave it at this approximation.
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Until further notice, we consider both models to be equally acceptable, so we employ them
both.

At final time tf , when the ball hits the numbered ring, we have

x1(tf ) = Rnum (40)

which allows us to estimate tf by utilizing the experimental data from [1]. From orbit T11B21
– which is one of the smoothest orbits, and therefore serves as an example – we obtain the
value

t̂f = 116 sec: (41)

We can now determine the two coefficients fl and fq by running two Runge-Kutta procedures
(one for each friction model) for varying values of fl and fq, meanwhile continually checking
on condition (40), with tf substituted by t̂f . This method eventually yields the rough estimates

bfl = 0�015 sec�1; (42)

and

bfq = 0�035 m�1: (43)

Figure 6. Total angle ' as function of time t. Figure 7. Radius R as function of '.
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Figure 8. Radial velocity _R (linear model). Figure 9. Radial velocity _R (quadratic model).

Figure 10. Angular velocity _'. Figure 11. Spin _ .
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With all of the above data we have run the Runge-Kutta routine ODE45.M, supplied by
the mathematical software package 386-MATLAB, where we set the error tolerance to 10�6.
The results are reported in Figures 6–11, where the dashed graphs represent the output from
the quadratic friction model. Figure 6 shows an almost linearly evolving total covered angle '
for both models. Therefore, and because the ball moves in orbit round the centre of the drum,
we will often consider the solution as a function of ', rather than of t. A more natural way
to observe the motion of the ball – especially from a player’s point of view – is thus depicted
in Figure 7. It shows that the ball slowly spirals down the drum, with clearly perceptible
elliptical revolutions. The distance to the centre of the drum decreases slightly faster in the
quadratic case, as does the amplitude of the corresponding oscillations (see Figures 8 and 9).
Finally, the angular velocity of the ball shows a gradual though oscillatory increase, whereas
the spin gradually decreases (see Figures 10 and 11). Although the two friction models lead to
different results, the overall characteristics appear to be very similar. We prefer to work with
the linear model. Our reasons for this preference will be stated in the next section.

4. Analytical solutions

4.1. RESCALING THE EQUATIONS

In this section – as in the previous one – we neglect the spin resistance (h = 0), and assume
that the drum is in a perfectly horizontal position (� = 0). Hence the motion of the ball
depends on the gravitational force (magnitude: Fg) and the resistive force (Fa), the latter
being much smaller than the former (see Section 2). This firstly gives us the opportunity to
introduce a small parameter in terms of the ratio Fa=Fg . Secondly, this ratio makes it plausible
to introduce two different time scales for the global motion of the ball:

(1) a typical time scale for one revolution, which is of the order R=Vo � 1 sec. This is
in accordance with the fact, noted in Section 2, that the gravitational force Fg and the
centrifugal force Fc are of the same order of magnitude;

(2) a time scale much larger than the first one, characteristic for the elapsed time after which
the air drag becomes significant, of the order (see (28)2;4) of 7m=5F = 7=5f � 100 sec,
due to the fact that the resistive force Fa is much smaller than both Fg and Fc.

On the basis of these two time scales we shall employ a two-variable expansion procedure as
described in [6], Chapter 3.

To rescale the equations of motion (22), we introduce the dimensionless variables

R̂ = R=R0; (R0 = R(0)); !̂ = _'=!0; (!0 = _'(0));


̂ = _ =
0;

�

0 = � _ (0) =

1� sin�
a cos�

R0!0

�
; t̂ = !0t;

f̂ = 5
7fl=!0; ĝ = 5

7g sin� cos�=(!0
2R0) = 1� 2

7 sin�� 5
7 sin2 �;

(44)

where we again (see Sections 2 and 3) express our preference for a linear Fa-model, since it
simplifies our analytic expressions. So from now on we assume f(vo) to equal a constant fl.
The new variables, with h = � = 0, change system (22) into

d2R̂

dt̂2
= �f̂

dR̂

dt̂
+ R̂!̂2 cos2 �� 2

7 !̂
̂(1� sin�) sin�� ĝ;
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d!̂

dt̂
= �f̂ !̂ � 2R̂�1!̂

dR̂

dt̂
;

d
̂

dt̂
=

sin�
1� sin�

!̂
dR̂

dt̂
; (45)

with

R̂(0) = !̂(0) = 
̂(0) = 1; and
dR̂

dt̂
(0) = 0: (46)

When air resistance is completely neglected (i.e. F(vo) = f(vo) = fl = 0), the equations of
motion admit three first integrals, representing conservation of angular momentum – about
two distinct axes – and conservation of energy. With f̂ = 0, (45) reduces to (we omit the hats):

�R = R!2 cos2 �� 2
7!
 sin�(1� sin�)� g; (47)

_! = �2R�1! _R; (48)

_
 = sin�(1� sin�)�1! _R: (49)

From (48) we find

d
dt
fR2!g = 0; (50)

reflecting conservation of angular momentum about the central axis of the drum. Combination
of (48) and (49) leads to conservation of angular momentum about the axis of spin, or

d
dt
f
(1� sin�) + !R sin�g = 0: (51)

Another quantity that is preserved in the absence of air friction is the total mechanical energy,
being the sum of kinetic and potential energies. We will, however, not use this quantity here,
because it would – due to the essential nonlinear nature of the energy – needlessly complicate
our calculations.

The two remaining conservation laws imply that the most direct way to study the depen-
dency on f̂ is by analyzing the momentary changes in the two physical quantities in (50) and
(51). To this end, we introduce three new variables

y1 = R̂2!̂; y2 = 
̂(1� sin�) + !̂R̂ sin�; y3 = R̂; (52)

which results in the following form of the equations of motion:

_y1 = �f̂y1;

_y2 = f̂y1y3
�1 sin�;

�y3 = �f̂ _y3 + (1� 5
7 sin2 �)y1

2y3
�3 � 2

7y1y2y3
�2 sin�� ĝ;

(53)

and the initial conditions

y1(0) = y2(0) = y3(0) = 1; _y3(0) = 0: (54)
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Figure 12. Residuals from the fitted regression equation log(y1) = b0 + b1t, with y1 = R2
_'.

The first equation in (53) is uncoupled from the rest of the system, and leads – via the
corresponding initial condition in (54) – to the solution

y1 = e�
^f^t = e�5=7flt: (55)

This formula expresses the explicit dependency of the total area covered per unit time R2 _'
on the air friction coefficient fl and time t. By fitting equation (55) to the experimental data
provided by [1], we can expect to obtain an accurate estimate of coefficient fl. A logarithmic
transformation and a simple linear regression model, applied to orbit T11B21, yield the
estimated value

bfl = 0�014 sec�1: (56)

Note that this value does not differ much from the one in (42). The residuals from the regression
model are plotted in Figure 12. The apparently small values indicate a close fit, but the rough
sine shape does not indicate a truly linear friction model. But it also does not point to a truly
quadratic model, as can be seen in Figure 13, where we used the earlier estimates of fl and
fq to plot log(y1) for both friction models (the dashed curve represents the quadratic model).
We now definitely favour the linear model, because of its elegance and greater simplicity.

Substitution of the estimated fl in (56) into the Runge-Kutta procedure does, however, not
lead to an orbit that closely matches the example orbit T11B21. One of the obvious reasons
is that the experimentally determined initial angular velocity appears to be lower than the
theoretical value of 1�13 rad/sec in (36): [1] reports the value

c!0 = 1�09 rad=sec: (57)

Figure 14 compares orbit T11B21 to the Runge-Kutta output based on the newly estimated
values of fl and!0 (the dashed graph represents the Runge-Kutta output). The overall shape of
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Figure 13. log(y1) as function of t.

Figure 14. A comparison of numerical results and experimental data.

the graphs appears to be quite similar, especially during the first part of the experiment. How-
ever, the second part shows a slightly varying phase shift and a small variation in amplitude.
We would be able to assess the influence of the system parameters and the initial conditions
on the orbit of the ball better if we supplied system (45) with an analytical solution. But since
such a solution is not available, we are forced to use an asymptotic approximation method. In
the next subsection we will present such a method, where the asymptotics will be based on
the small value of fl, or (better) f̂ .
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4.2. ASYMPTOTIC SOLUTIONS

Since the ball moves in an orbit around the centre of the drum, it is only natural to replace
independent variable t̂ in system (53) with the variable '. This change of variables is common
in the treatment of satellite equations (cf. [6], Section 3.4), which have a lot in common with
our set of equations. The procedure we shall follow runs more or less along lines analogous
to those presented in Sections 3.4.1 and 3.4.2 of [6].

With the transformations

u(') = y3
�1; v(') = y1

�1; (58)

we find from (52)

!̂ =
d'

dt̂
=
u2

v
: (59)

Furthermore, to remove the factor sin� in (53)2, we rewrite y2 as

y2 = 1� w(') sin�: (60)

This change of variables transforms (53) into the new system

dv
d'

= f̂
v2

u2 ;
dw
d'

= f̂
1
u
;

d2u

d'2 = �u+
v2

u2 �
2
7 sin�

 
v2

u2 � v

!
+ 5

7 sin2 �

 
u�

v2

u2 �
2
5vw

!
;

(61)

with corresponding initial conditions

u(0) = v(0) = 1; w(0) = 0;
du
d'

(0) = 0: (62)

This new set of equations reveals an explicit dependenceon just two dimensionless parameters,
namely f̂ and sin�, which both turn out to be small. The first one expresses, as we have seen
before, the smallness of the resistive force as compared to the gravitational force (cf. [6],
Sect. 3.4.2). We here replace f̂ by " and note that

" = f̂ = 5
7fl=!0 � 8�8� 10�3 (63)

in accordance with (36)3 and the estimate for fl in (56). The second small parameter is due
to deviations in the gravitational force, related to the slope of the drum surface (comparable
to [6], Sect. 3.4.1). Although the two small parameters have quite different physical origins,
their influences on the equations of motion (61) are of the same order of magnitude. This is
manifested as follows

2
7 sin� = d1";

5
7 sin2 � = d2"; (64)

where d1 and d2 are coefficients of O(1)-magnitude, i.e. (from (34))

d1 = 2�69 and d2 = 0�559: (65)
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In this way we are able to combine the two small effects in one small parameter ". With these
substitutions, (61) can be rewritten as

dv
d'

= "
v2

u2 ;
dw
d'

= "
1
u
;

d2u

d'2 + u�
v2

u2 = "

"
d1

 
v �

v2

u2

!
+ d2

 
u�

v2

u2 �
2
5vw

!#
:

(66)

Hence, u obeys the equation of a weakly nonlinear oscillator (cf. [6]), and this type of problem
is well adapted to solution by the multiple-variable expansion method. As we already saw
before, this problem involves two time scales, and therefore – following [6], Section 3.2 – we
introduce the fast and slow '-scale by

'1 = (1 + "2!2 + "3!3 + � � �)' (67)

and

'2 = "'; (68)

respectively, where !2; !3; : : : , are unknown coefficients (not depending on "). However, as
we are not looking for a solution valid for all possible values of ', but only for a range up to
' = O("�1) (see Figure 6), these !i-coefficients are redundant here, and may be taken zero,
i.e.

!2 = !3 = � � � = 0 ) '1 = ': (69)

Furthermore, we assume the variables u; v andw to be functions of both '1 and '2, and write
them as

u = u('1; '2); v = v('1; '2); w = w('1; '2); (70)

thus finally transforming (66) into

@v

@'1
+ "

@v

@'2
= "

v2

u2 ;
@w

@'1
+ "

@w

@'2
= "

1
u
;

@2u

@'1
2 + 2"

@2u

@'1@'2
+ "2 @

2u

@'2
2 = �u+

v2

u2 + "

"
d1v + d2u� (d1 + d2)

v2

u2 �
2
5d2vw

#
:

(71)

Without loss of generality we may assume '1(0) = '2(0) = 0, yielding the initial
conditions

u(0; 0) = v(0; 0) = 1; w(0; 0) = 0;

@u

@'1
(0; 0) + "

@u

@'2
(0; 0) = 0:

(72)
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We now expand u; v, and w into the following asymptotic power series

u �
1X
i=0

ui('1; '2)"
i; v �

1X
i=0

vi('1; '2)"
i; w �

1X
i=0

wi('1; '2)"
i (73)

and we shall try to find solutions for ui; vi; and wi – on a limited '-scale of O("�1) – by
substituting the series (73) in (71) and (72), and by matching the terms with equal powers
in ".

For the "0-terms we thus obtain

@v0

@'1
= 0;

@w0

@'1
= 0;

@2u0

@'2
1

= �u0 +
v0

2

u0
2 ; (74)

with

u0(0; 0) = v0(0; 0) = 1; w0(0; 0) = 0;

@u0

@'1
(0; 0) = 0;

(75)

whereas the "1-terms yield

@v1

@'1
= �

@v0

@'2
+
v0

2

u0
2 ;

@w1

@'1
= �

@w0

@'2
+

1
u0
;

@2u1

@'1
2 + 2

@2u0

@'1@'2
= �u1 + 2

 
v0v1

u0
2 �

v0
2u1

u0
3

!
+ d1v0 + d2u0

� (d1 + d2)
v0

2

u0
2 �

2
5d2v0w0;

(76)

with

u1(0; 0) = v1(0; 0) = w1(0; 0) = 0;

@u1

@'1
(0; 0) +

@u0

@'2
(0; 0) = 0: (77)

From (74)3, with initial conditions (75), we find that both the first and the second derivative
of u0, with respect to '1, vanish in 0. From a quadrature of this equation it then follows that
@u0=@'1 = 0 for all '1 > 0, and hence we obtain from (74)

u0 = U0('2); v0 = V0('2); w0 =W0('2); (78)

such that

U0
3('2) = V0

2('2) (79)
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and

U0(0) = V0(0) = 1; W0(0) = 0: (80)

Solutions for U0; V0 and W0 follow from the "1-equations by requiring that the secular
terms must equal zero (cf. [6]). So the first equation in (76) yields

@v1

@'1
= �

dV0

d'2
+
V0

2

U0
2 = �V0

0 + V0
2=3 (81)

which would result in a linear, unbounded particular solution for v1, unless

�V0
0 + V0

2=3 = 0; (82)

yielding, with V0(0) = 1,

V0 = (1 + 1
3'2)

3 (83)

and

U0 = (1 + 1
3'2)

2: (84)

Analogously, the second equation in (74) leads us to

@w1

@'1
= �

dW0

d'2
+

1
U0

= �W0
0 + (1 + 1

3'2)
�2; (85)

or, with W0(0) = 0,

W0 = '2(1 + 1
3'2)

�1: (86)

Hence we see that for a complete solution of the "0-terms, we need the equations of the
"1-approximation (and so on for the higher-order terms). Substitution of (83), (84) and (86)
in (76) results in

@v1

@'1
= 0; or v1 = V1('2);

@w1

@'1
= 0; or w1 =W1('2)

(87)

and (where the last two results have already been substituted)

@2u1

@'2
2 + 3u1 = 1

3(d1 �
6
5d2)'2(1 + 1

3'2)
2 + 2(1 + 1

3'2)
�1V1 =: R1('2): (88)

The solution of the latter equation reads

u1('1; '2) = U1('2) +A1('2) sin
p

3'1 +B1('2) cos
p

3'1; (89)
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with

U1('2) =
1
3R1('2); (90)

and, following from (77) and R1(0) = 0,

A1(0) = �2
9

p
3; B1(0) = 0: (91)

We can determine the functions A1; B1; V1, and W1 by matching the "2-terms, and equating
the secular terms (which lead to unbounded solutions in '1) to zero. This eventually leads to
an explicit expression for the apparently periodic function u1.

The "2-versions of the first two equations in (71) lead to

@v2

@'1
=

�
�

dV1

d'2
+ 2(1 + 1

3'2)
�1V1 �

2
3R1

�

�2A1 sin
p

3'1 � 2B1 cos
p

3'1; (v2(0; 0) = 0);

@w2

@'1
=

�
�

dW1

d'2
� 1

3 (1 + 1
3'2)

�4R1

�

�(1 + 1
3'2)

�4(A1 sin
p

3'1 +B1 cos
p

3'1); (w2(0; 0) = 0):

(92)

The solutions remain bounded only if the secular terms (between square brackets) are equal
to zero, hence

V1
0 � 2(1 +

1
3
'2)

�1V1 = �
2
3
R1; W1

0 = �
1
3
(1 +

1
3
'2)

�4R1; (93)

which leads, via V1(0) =W1(0) = 0, and R1 as in (88), to

V1('2) = �1
9(d1 �

6
5d2)'2

2(1 + 1
3'2)

2 (94)

and

W1('2) = �1
3(d1 �

6
5d2)'2(1 + 2

3'2)(1 + 1
3'2)

�2 + (d1 �
6
5d2) log(1 + 1

3'2): (95)

By substituting these results in (92) and solving the resulting differential equations, we obtain

v2('1; '2) = V2('2) +
2
p

3
3
A1 cos

p
3'1 �

2
p

3
3
B1 sin

p
3'1; (96)

with

V2(0) = �
2
p

3
3
A1(0) = 4

9 (97)

and

w2('1; '2) =W2('2) +

p
3

3
(1 + 1

3'2)
�4fA1 cos

p
3'1 �B1 sin

p
3'1g (98)
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with

W2(0) = �

p
3

3
A1(0) = 2

9 : (99)

The above results allow us to write out the "2-terms in (71)3 as

@2u2

@'1
2 + 3u2 = R2('2) +

3
2(1 + 1

3'2)
�2f2A1B1 sin 2

p
3'1 � (A2

1 �B2
1) cos 2

p
3'1g

�2
p

3[A01 �
2
3(1 + 1

3'2)
�1A1 � !1B1] cos

p
3'1

+2
p

3[B0

1 �
2
3(1 + 1

3'2)
�1B1 + !1A1] sin

p
3'1; (100)

where

R2 = ( 4
27 + 2

9d
2
1 +

1
5d1d2 �

14
25d

2
2)'2 + ( 2

81 + 4
27d

2
1 +

2
15d1d2 �

28
75d

2
2)'

2
2

+ 11
135d2(d1 �

6
5d2)'

3
2 �

1
81(d1 �

6
5d2)

2'4
2

�2
5d2(d1 �

6
5d2)(1 + 1

3'2)
3 log(1 + 1

3'2) + 2(1 + 1
3'2)

�1V2('2) (101)

and

!1 =

p
3

3
(d1 +

3
2d2) +

p
3

9
(d1 �

6
5d2)'2: (102)

In this case, the secular terms are the ones with cos
p

3'1 and sin
p

3'1. Equating these terms
to zero, we find

A01 =
2
3
(1 +

1
3
'2)

�1A1 + !1B1; B0

1 =
2
3
(1 +

1
3
'2)

�1B1 � !1A1: (103)

A straightforward solution of (103) subject to the initial conditions (91) yields

A1('2) = �2
9(1 + 1

3'2)
2 cos
1; (104)

B1('2) =
2
9(1 + 1

3'2)
2 sin
1; (105)

where


1 = 
1('2) =

Z '2

0
!1(�) d� =

p
3

3
(d1 +

3
2d2)'2 +

p
3

18
(d1 �

6
5d2)'

2
2: (106)

This ultimately results in the following explicit solution for u1

u1 = 1
9 (d1 �

6
5d2)'2(1� 1

3'2)(1 + 1
3'2)�

2
9

p
3(1 + 1

3'2)
2 sin(

p
3'1 � 
1('2)): (107)

This completes the solution up to and including theO("1)-terms. The "2- and higher-order
terms can be found by substitution of results for A1 and B1 in the expressions for u2; v2

and w2, from which we can derive the "3-versions of our equations. We may then determine
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the still unknown functions, such as V1;W1 etc., by equating the secular terms to zero. This
process involves the same techniques as have been applied to the calculation of lower-order
terms; the results are reported in Appendix A. We have compared our asymptotic results with
the numerically computed results in Section 3. This comparison shows that the differences are
indeed of order 10�6 = O("�3) for all ' 2 [0; 'f ], with 'f � 160 rad. This corroborates the
correctness of our assumptions. We leave the conclusions to the final section.

5. Conclusions

In a deterministic model, the orbit of the ball in the drum is completely determined by the
equations of motion, which are represented by a set of ordinary differential equations (22)
and initial conditions (25). Since this system contains at least two coefficients of unknown
magnitude, an exact solution will not become available until these coefficients will have been
accurately determined by means of complementary experiments. Under the assumption of
linear air friction, part of the system of differential equations can be solved exactly. The
resulting solution (55) can be employed to estimate the unknown air-friction coefficient, viz.
by fitting this solution to the experimental data provided by [1]. We may obtain a rough
impression of the total solution by substituting some preliminary estimates in a Runge-Kutta
routine: the results in Figure 7 show a slightly elliptical, downward spiraling orbit. The slope
of the descent and the periodicity of the elliptical spiral appear to be strongly dependent on the
air-friction force (this follows directly from the formulas in Section 4). A reliable prediction of
the outcome hence requires a very accurate estimate; further research will hopefully provide
this estimate.

Under the assumption of a zerospin friction coefficient, the differential equations of (22)
can be expressed in terms of only two dimensionless parameters:� and ", where� is the angle
of inclination of the drum surface, and " is a simple combination of the air friction coefficient
and the ball’s initial angular velocity (see (63)). As has been shown in (65), these two small
effects can be combined into one small parameter, for which we have taken ". The smallness
of " physically represents the fact that the resistive force Fa, due to air friction, is much larger
than both the gravitational force Fg and the centrifugal force Fc. When a linear air friction
model is applied, the system of equations can be solved analytically through expansion of the
solution into an asymptotic power series in ". The definitions (52) and (58), together with the
formulas in Appendix A, yield

u = R0=R = (1 + 1
3'2)

2 +O(")

= (1 + 1
3"')

2 +O("); (108)

which reveals explicitly a slowly descending orbit, the slope of which is largely determined
by the value of ". Higher-order approximations reveal an elliptical spiral

u = R0=R = (1 + 1
3'2)

2 + 1
9"(d1 �

6
5d2)(1� 1

9'2
2)'2

�
2
p

3
9
"(1 + 1

3'2)
2 sin(

p
3'1 � 
1) +O("2)
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= (1 + 1
3'2)

2f1 + 1
9"(d1 �

6
5d2)(3� '2)(3 + '2)

�1'2g

�

(
1�

2
p

3
9
" sin(

p
3'1 � 
1)

)
+O("2): (109)

During one revolution, and to withinO(")-approximation,'2 is constant, hence (109) strongly
resembles the phase-plane equation of an ordinary ellipse,

1=r = 1=cf1� e sin �g; (110)

with the origin situated at one of the foci, and the major axis corresponding to � = �=2. Apart
from a scaling factor, expression (109) represents an elliptical curve with an eccentricity of
2
p

3=9"+O("2). This curve is periodic with frequency
p

3.
If Golden Ten could be considered to be a deterministic game, then the outcome of the game

would depend directly on the point where the ball leaves the rim, and the players could then
predict the final outcome by accurately observing just this one point. The exact location of this
point can however be quite hard to determine, since this requires an extrapolation technique.
A more manageable strategy is to observe one or more points somewhere in the middle of
the orbit: the accuracy of these observations can be increased by interpolating the pattern of
rotating ellipses. The effectiveness of the prediction can be improved by making allowance
for very small disturbances, which will eventually lead to a shift of one or two compartment
numbers. However, if further research points out that a deterministic model does not suffice –
as can in fact already be suspected from Figure 14 – the success of this strategy will be very
meagre. Future research will have to decide the validity of the assumptions that were made so
far. Guided by the asymptotic results in Section 4, we hope to attain more insight in the nature
of possible disturbances, and how to include these as random factors in an extended model
for the motion of the ball in the drum.

Appendix

A. Asymptotic power series

This appendix contains the coefficient lists of the power series in (73). We derived the formulas
by employing the techniques described in Section 4.3. Most of the calculations were done
with the software package Mathematica-386/7.

u0 = (1 + 1
3'2)

2; (A.1)

v0 = (1 + 1
3'2)

3; (A.2)

w0 = '2(1 + 1
3'2)

�1; (A.3)

u1 = 1
9 (d1 �

6
5d2)'2(1� 1

3'2)(1 + 1
3'2)�

2
p

3
9

(1 + 1
3'2)

2 sin(
p

3'1 � 
1); (A.4)

v1 = � 1
9(d1 �

6
5d2)'2

2(1 + 1
3'2)

2; (A.5)

w1 = � 1
3(d1 �

6
5d2)'2(1 + 2

3'2)(1 + 1
3'2)

�2 + (d1 �
6
5d2) log(1 + 1

3'2); (A.6)

engi474.tex; 26/11/1997; 13:00; v.5; p.23



304 J.C. de Vos and A.A.F. van de Ven

u2 = 8
27 + ( 8

27 + 2
27d

2
1 �

1
45d1d2 �

2
25d

2
2)'2 + ( 2

81 �
2
45d1d2 +

4
75d

2
2)'

2
2

� 2
243 (d1 +

27
10d2)(d1 �

6
5d2)'

3
2

1
729 (d1 �

6
5d2)

2'4
2

+ 2
15d2(d1 �

6
5d2)(1 + 1

3'2)
3 log(1 + 1

3'2)

�(1 + 1
3'2)f�1 sin(

p
3'1 � 
1) + �2 cos(

p
3'1 � 
1)g

+ 2
81(1 + 1

3'2)
2 cos(2

p
3'1 � 2
1); (A.7)

v2 = f 4
9 + (10

27 �
2

15d1d2 +
4
25d

2
2)'2 + ( 2

81 �
2

27d
2
1 �

2
15d1d2 +

4
15d

2
2)'

2
2

� 1
81(d1 + 6d2)(d1 �

6
5d2)'

3
2 +

2
243 (d1 �

6
5d2)

2'4
2g(1 + 1

3'2)

+2
5(d1 �

6
5d2)(1 + 1

3'2)
4 log(1 + 1

3'2)

�4
9(1 + 1

3'2)
2 cos(

p
3'1 � 
1); (A.8)

w2 = f2
9 �

13
15d2(d1 �

6
5d2)'2 � ( 10

81 + 1
27d

2
1 +

32
45d1d2 �

68
75d

2
2)'

2
2

�( 14
729 + 23

135d1d2 �
46

225d
2
2)'

3
2g(1 + 1

3'2)
�3

+d2(d1 �
6
5d2)f

13
5 �

1
5 log(1 + 1

3'2)g log(1 + 1
3'2)

� 2
9(1 + 1

3'2)
�2 cos(

p
3'1 � 
1); (A.9)


1 =

p
3

3
(d1 +

3
2d2)'2 +

p
3

18
(d1 �

6
5d2)'

2
2; (A.10)

�1 =

p
3

9
(d1 +

3
5d2) +

2
p

3
27

(d1 �
3

10d2)'2 �

p
3

243
(d1 �

6
5d2)'

2
2

+
2
p

3
45

d2(1 + 1
3'2) log(1 + 1

3'2); (A.11)

�2 = 26
81 � ( 2

243 + 1
27d

2
1 +

7
45d1d2 +

3
100d

2
2)'2

+( 2
729 �

1
81d

2
1 �

5
54d1d2 +

7
180d

2
2)'

2
2

+ 1
243 (d1 �

9
2d2)(d1 �

5
6d2)'

3
2 +

1
729 (d1 �

6
5d2)

2'4
2

+ 2
15d2(d1 �

6
5d2)(1 + 1

3'2)
3 log(1 + 1

3'2): (A.12)
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