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Abstract. Golden Ten is an observation game which is played with asmall ball rolling down in alarge bowl. This
paper describes the maotion of the ball in the bowl by means of a deterministic mechanica model, which leads
to a set of ordinary second-order differential equations. A first impression of the solution is obtained through a
numerical approximation, based on some preliminary estimates. Part of the solution iscomputed exactly, yielding a
simple estimation procedure for the coefficient of air friction, which is one of the two main parameters controlling
the system (the other parameter is the angle of inclination). An asymptotic solution method eventually leads to an
approximate explicit solution, describing the motion of the ball as an elliptical spiral. One of the conclusionsisa
simple prediction strategy.

Key words: asymptotic power series, equation of motion, multiple scales, nonlinear differential equation, obser-
vation game.

1. Introduction

Golden Tenisamodified version of Roulette. The gameis played with asmall ball movingin
arelatively large drum, at the bottom of which there is a ring with numbered compartments.
The main differences with Roulette are that the drum is in fact a smooth, conic bowl in which
the ball smoothly spirals down, and secondly that the players do not have to stake before the
ball has reached a certain level. Although the players cannot control the motion of the ball, it
is claimed that the possibility to observe part of the ball’s orbit enables them to make a better
than random guess on the outcome. This would imply that Golden Ten is a game of skill,
rather than a game of chance.

The main attributes of the gameareasmall solid ball, made of ivory-like synthetic material,
and a big, dightly grooved, uncoated metal drum; Figures 1 and 2 respectively show a top-
and a side-view of the drum. At the beginning of the game, the ball is launched from a dlit
plastic arm at the upper rim of the drum. After rolling a few rounds alongside of the rim, the
ball gradually spirals down the drum, towards a ring with twenty-six numbered, equally large
compartments. On the surface of the drum two concentric circles have been drawn (as shown
in Figure 1). The upper circle is called the observation ring, the lower one is the limit ring.
The players start betting — on one or more possible outcomes — when the ball reaches the
observation ring, and the betting must be stopped at the limit ring.

This paper employs amechanical model to describe the motion of the ball in thedrum. The
model resultsin aset of second-order, ordinary differential equations, with acorresponding set
of theoretical initial conditions. An exact analytical solution to this system of equationsis not
available, but a numerical solution based on preliminary estimates from [1], complemented
with an asymptotic approximation based on the small values of the system parameters, provide
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Figure 1. The Golden-Ten drum; top-view.
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Figure 2. The Golden-Ten drum; side-view.

ampleinformation on the characteristics of the solution. One of theresultsisaparametrization
of thetrajectory of the ball asan elliptical spiral, moving down from the rim towards the apex
of thedrum. Thisclearly perceptible pattern leadsto a simple prediction strategy, of which the
yield depends on the validity of the assumptionsin the — deterministic — mechanical model.

The system of differential equations can be rewritten in terms of new variables, after which
one of the equationsdirectly leadsto an exact analytical result. Thisresult providesameansto
accurately estimate the unknown value of one of the model parameters, namely the coefficient
of air friction. Future research will hopefully render estimates of the remaining unknown
values. By then, the analytical resultsfrom the current paper —including the asymptotic power
series—will serveasabasisfor aclose comparison of the theoretical solutionto empirical data,
assupplied by [1]. As has aready been indicated by previousresearchin [2], this comparison
will probably lead to an extension of the mechanical model with random factors, the nature
of which will have to be determined through further research.
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The Golden-Ten equations of motion 283

2. Themechanical model

The most natural model to describe the motion of the ball is a three-dimensional rigid-body
model, but, before such amodel can be constructed, we have to make some basic assumptions:

(@) theball is auniform sphere;

(b) the drum isrotationally symmetric;

(¢) thesurface of thedrum —including that of the rim —is so smooth that the ball rolls without
bouncing, but on the other hand so rough that the ball (after two or three revolutionsalong
the rim) rolls without slipping;

(d) the motion of the ball is completely deterministic, i.e. no random factors are included.

No assumptions are made for the — preferably — horizontal position of the drum, i.e. we allow
for a dlightly tilted position. We denote the angle over which the drum is tilted with 3. The
radius of the ball isa, that of therimis Ryim, whereas R,um denotesthe radius of the numbered
ring. The angle of inclination of the conical drum surface is « (as in Figure 2). Note that
O<a<gn/2and0< K a.

We introduce a moving rectangular coordinate system {Oe;eses} to describe the motion
of the ball on the surface of the drum (see Figures 3 and 4). The origin O coincides with the
apex of the drum, e; pointsin the direction from O to P (being the point of contact between
the ball and the drum) and ez is paralel to the drum surface normal in P. Therotation of the
three coordinate axes can thus be written as

. d
ei—aed—ﬂxei, 1

where §2 representsthe angular vel ocity. Calling ¢ the angle of rotation of e; about the central
axis of the drum, we obtain

2 =¢psinae; + ¢ Ccosaes. 2
The position x,, of the centre of the ball o, with respect to O, can be described by
X, = r€1 + aes, ©)

where r is the distance from O to P. The velocity v, of o is the time derivative of x,, so it
equals

Vo:)‘(o:i“el‘i‘r.el‘{‘a‘e& (4)

By substituting (1) in (4), and introducing

R =rcosa —aSna, 5)
we obtain

V, = 1€ + (r¢ cosa — ap Sina) —i + R¢ (6)

o = T€1 4 14 € = COSael pe.
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284 J.C.deVosand A.A.F. van de Ven

Figure 3. The moving frame {O€,€,€3}; top-view.

Figure 4. The moving frame { O€16,€5}; side-view.

Likewise, the acceleration of o is
V, = i + B, + Rper + Rper + Ryé
o = COSael COSael pe2 pe2 pe

R : :
= (E — Ry? c05a> e + (Rp + 2Rp)er + Ry sinaes. (7

According to assumption ¢, the ball purely rolls; hence the instantaneous vel ocity vp of P
is zero. With w denoting the angular velocity of the ball, thisimplies

0=Vp =V, +w x (—aes). (8
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The Golden-Ten equations of motion 285
Substitution of (6) in (8) yields

R¢ R
w=—"Le +

" —osa® T ez, )

where ¢ denotes the third component of w, which is called the spin. We obtain the time
derivative of w by differentiating (9), and substituting (1) in the result

. Rp+Rp_ Ry, R R . .
w = Pt ae1+aCOSaez+aCOSaez+¢es+¢e3

s Rotan .
- smpsma> &+ (—@ c +¢> &s. (10)
a a COS« a

R + 2Ry R — Ry? cos?
_ _Re+2Rp (#
The equations of motion are implicitly contained in the law of momentum and that of
moment of momentum (consult e.g. [3], Ch. 8). With m representing the mass of the ball, and
F the total force acting on the ball, the first law reads

mv, = F (1)
and the second states
Iw =M, (12

with I representing the central moment of inertia—so I = %maz —and M being the momentum
about o. Before we can elaborate these equations by writing them out in components in the
{Oeree3} system, we must first specify F and M. Four distinct forces act on the ball: the
normal force F,,, the frictional force (or dry friction) F,, the resistive force F, (due to air
friction) and the gravitational force F,. These forces combine into

Fp+Fq+Fa+F,=F. (13)

Note that the forcesF,,, F, and F, act in o, whereas the line of action for F; isthrough P, in
the ejep-plane. Hence only F, contributes to the momentum about o.
The normal force can simply be written as

Fn = Nes, (14)

where N isanonnegative scalar. Likewise, the frictional force —which is tangent to the drum
surfacein P —isgiven by

Fa=Dier + D26 (19)

TheresistiveforceF, isduetotheair friction the ball experienceson account of thetrandlation.
Sincethis force is directed opposite to v, and its magnitude depends on v,, we write

Fa = _f(vo)vo = _f(vo) (%el + R(P62> y (16)
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where F(v,) isasimple function of

vo = Vol = /(R cosL )2 + (Rp)2, (17)

somewherein between aconstant and alinear function. In case of afreely moving sphere, and
for high Reynolds numbers, the friction force is a pure pressure drag. This drag is quadratic
in v, and of the order of 3pV,%C,ma?, where p is the density of air, V, a characteristic
velocity, and C, the drag coefficient, with Cy; ~ 1 (cf. [4], Sect. 1.5, or [5], Sect. 40). For
Vo = 0-5m/sec, p ~ 1.2 kg/m3, and ¢ = 0-0175m, thisyields a magnitude for F, of about
1.5 x 10*N. This s, at least in order of magnitude, in correspondence with values of the
resistiveforcefoundin our experiments (see Section 3), which are of the order of 3x 104 N. A
linear viscousmodel, for low Reynoldsnumbers, would (cf. [4], Sect. 7.6) yieldF, ~ nV,aCy
(n: viscosity of air), which is of the order of 10~7, and thus much lower than the observed
values. Inthelight of our experimental resultswe favour the quadratic model (yielding alinear
F(v,)), athough the ball is not free here, but rolls over a solid surface. However, the range
of velocities traversed in practice is limited, and alinear model (having constant F(v,)) will
probably also suffice. In Section 3 we will consider both options, and compare the results.

Considering the gravitational force, we know that it would be directed along the central
axis of the drum if the position of the drum were exactly horizontal (the ideal case). We here
assumethat the drum istilted about asmall angle 3, and that the plane of inclination isrotated
about an angle pg —with @5 € [0, 2rr) — so that F, takes the form

Fy = — mg(cos(y — ¢g) cosasinf + sina cosf3)er +mgSin(y — pg) Sin B&y
+ mg(cos(y — pg) SiNa SN — coSa oS f)es, (18)

where g represents the acceleration of gravity. Since g is extremely small, the component of
the gravitational force in the plane of the drum is of the order F; ~ mgsina =~ 3 x 102N,
whereas the order of the centrifugal forceis F, ~ mV,? /R =~ 2 x 10~2N. Hence, F, and
F, are of the same order of magnitude, but ¥, = ||F,|| is much smaller than both F;; and F..
Henceit is possibleto introduce asmall parameter in the form of the quotient of F, and either
F, or F.. Wewill return to this subject in Section 4.

The last term to be expressed in {e;exe3} coordinatesis the total momentum M, where M
is composed of two parts: the momentum M, caused by the frictional force F 4, and therolling
resistance M,. which is assumed to be proportional to the spin (rolling resistance due to the
in-plane rotations w1 and w» is neglected). So

M= Mg+ M, (19)
with

My = —aes x Fyg = aDye; — aD1& (20)
and

M, = —Ihies, (21)

where h is a friction coefficient. From (3), (6) and (9), we find that the motion of the ball
is completely determined by the three variables R, ¢ and 1. By writing (11) and (12) out in
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components in the {Oe;e;e3} system, and by eliminating the unknowns N, D1 and D,, we
obtain (with f(v,) denoting F (v,)/m)

.. . 2a . - .
R = _gf(uo)RJch,bzcoszanL7a<pz/)COSolena

5 . .
—79 cosa(cosa sin3 cos(¢ — ¢g) + Sina Cosf),

(22)

T
b = —2f(v)p — 2R"Lp + ZR-LsinBsin(p — o),

. 1.
¥ = —hp — “Reptana.
a

Theabovesystem of differential equationsisto becompletedwith aset of initial conditions.
We derive these conditions by again using assumption c: when the ball isrolling along therim
(see Figure 5), we know that the instantaneous velocity v of () (being the point of contact
between rim and ball) is equal to zero, hence

0 =Vg =V, +w x a(Cosae; — Sinaes). (23)

By substituting equations (6) and (9) in (23), wefind

0= FL=SNA)  riicosa+ Rp(1—sina)le — fes. (24)
cosa
Att = Othe ball leavesthe rim; from (24) we conclude that at this time the ball momentarily
movesin acircular orbit (R(0) = R(0) = 0), with radius R(0) = Ryim — a. Furthermore we
may choose ¢(0) arbitrarily, so we have ¢(0) = ¢o. To find (0) and »(0), we combine the
second component in (24) with thefirst equation in (22), whence

R(0) = Rim —a,  R(0)=0,

5¢(sina cosB + cosa sin 3 cos(ypo — ¢g))

PO =¢o. 40 = \/ R(0)(7cosa — 2tana(l—sina)) (29)
90 = 2 p(0)5(0),

At this point we have derived a system of three nonlinear second-order differential equations,
and a corresponding set of initial conditions. This system, represented by (22) and (25),
completely determinesthe motion of the ball in the drum. But, unfortunately, it does not seem
to admit any standard analytical solution method.

3. Numerical solutions

Any system of second-order differential equations can be rewritten as a system of first-order
differential equations by introducing some additional variables. To this end, we define

LU]_:R, .’I'ZZR, I3 =¥ —¥s, 1‘4:@7 £U5:1/‘) (26)
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Figure 5. The ball rolling aong the rim.

and regard these variables as components of the five-vector
X(t) = (z1(t), z2(t), 23(t), xa(t), w5(t)). (27)

With these new variables, the equations of motion in (22) can be rewritten as

:I./‘l = X2,
5 2 .
dp = —?f(vo):rz + 2124% COF o + 7aa;4a;5 cosa Sina
5¢ . .
——(cosasinfcoszz + Sina CoS/3) CoSc,
7
_ (28)
T3 = T4,
5 5 . :
Ga = _?f(vo).u — 201 Yaoza + 7gxflsmﬂsmx3,
. 1
T5 = —hxs — —z2zatana,
a
where
Vo = \/(:ch cos~1)? + (z114)° (29)
Likewise, with
zo; = 2;(0), ie€{d,...,5}, (30)
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The Golden-Ten equations of motion 289
theinitial conditionsin (25) can be transformed into

zo1 = Rrim — a, zo2 =0,

_ 0 | 5g(sinacosf + cosasin3) _12
T8 =5 T4 =\ (Teosa — 2tana(l—sina)) % (31)
o 1- Sha
L5 = —a cosa Z01Z04,
where the value of ¢ — g has been set to zero, for the sake of simplicity. We can solve this
type of differential equation by using a Runge-Kuttamethod. We choose the numerical values
of the system parametersin (28) and (31) asfollows. Since the positioning of the Golden-Ten
table must be done very carefully, the position of the drum will be closeto horizontal, leaving
at most avery small valuefor 3. Therefore we will, in our present calculations, assume

B=¢s=0. (32)

The dimensions of the drum and the ball are supplied by [1], from which we obtain

m = 0.0383kg,  a = 0-0175m, (33)
Ryim = 0-487mM,  Rpm = 0-205m, o = 0-0831rad (34)
and
g = 9-81m/sec’. (35)

The values (32-35) lead to the following initial conditions

o1 = 0-470 m, o2 = T3 = 07

(36)
zoa = 1-13rad/sec, zos = —28rad/sec.

This leaves us with the unknown friction coefficient 4 and the unknown friction function f.
As astart, we neglect the resistive force due to spin?, thus assuming
h =0. (37)

Aswas aready explained in Section 2, we have two options for the air resistance: aresistive
force directly proportional to the speed v, in which case

fwo) = fi, (38)
or apurely quadratic model, implying
flvo) = fqvo- (39)

1 1t seemsto usthat this point needs further study. We plan to do thisin subsequent work, but for the time being
we leave it at this approximation.
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Until further notice, we consider both models to be equally acceptable, so we employ them
both.
At final time ¢, when the ball hits the numbered ring, we have

xl(tf) = Rnum (40)

which allows usto estimate ¢ by utilizing the experimental datafrom [1]. From orbit T11B21
—which is one of the smoothest orbits, and therefore serves as an example — we obtain the
value

tr = 116sec. (41)

We can now determine the two coefficients f; and f, by running two Runge-Kutta procedures
(onefor each friction model) for varying values of f; and f,, meanwhile continually checking
on condition (40), with ¢ ; substituted by t - Thismethod eventually yieldsthe rough estimates

fi=0.015sec 1, (42)
and
fy=003m* (43)
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Figure 6. Total angle ¢ as function of time¢. Figure 7. Radius R asfunction of .
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With all of the above data we have run the Runge-Kutta routine ODE45.M, supplied by
the mathematical software package 386-MATLAB, where we set the error tolerance to 10-°.
The results are reported in Figures 6-11, where the dashed graphs represent the output from
the quadratic friction model. Figure 6 showsan almost linearly evolving total covered angle ¢
for both models. Therefore, and because the ball movesin orbit round the centre of the drum,
we will often consider the solution as a function of ¢, rather than of ¢. A more natural way
to observe the motion of the ball — especially from a player’s point of view —is thus depicted
in Figure 7. It shows that the ball slowly spirals down the drum, with clearly perceptible
elliptical revolutions. The distance to the centre of the drum decreases slightly faster in the
quadratic case, as does the amplitude of the corresponding oscillations (see Figures 8 and 9).
Finally, the angular velocity of the ball shows a gradual though oscillatory increase, whereas
the spin gradually decreases (see Figures 10 and 11). Although the two friction modelslead to
different results, the overall characteristics appear to be very similar. We prefer to work with
the linear model. Our reasons for this preference will be stated in the next section.

4. Analytical solutions
4.1. RESCALING THE EQUATIONS

In this section — as in the previous one — we neglect the spin resistance (h = 0), and assume
that the drum is in a perfectly horizontal position (5 = 0). Hence the motion of the ball
depends on the gravitational force (magnitude: F,) and the resistive force (F,), the latter
being much smaller than the former (see Section 2). This firstly gives us the opportunity to
introduce asmall parameter in terms of theratio F,, / F,,. Secondly, thisratio makesit plausible
to introduce two different time scalesfor the global motion of the ball:

(1) atypical time scale for one revolution, which is of the order R/V,, ~ 1sec. Thisis
in accordance with the fact, noted in Section 2, that the gravitational force F, and the
centrifugal force F,. are of the same order of magnitude;

(2) atime scale much larger than the first one, characteristic for the elapsed time after which
the air drag becomes significant, of the order (see (28)>%) of 7m /5F = 7/5f ~ 100 sec,
due to the fact that the resistive force F;, is much smaller than both £, and F..

On the basis of these two time scales we shall employ atwo-variable expansion procedure as
described in [6], Chapter 3.
To rescal e the egquations of motion (22), we introduce the dimensionless variables

R = R/Ry, (Ro=R(0); @&=¢/wo, (wo=p(0));

. . . 1-sna .

O = /%, (=90 ="—"YRowo); i=uwot; 44
¥/, < 0=—%(0) = ——— owo) wo (44)

f = %fl/wo; g:%gsinaCOSa/(wozRo):1—%Sinoz—%sin2a,

where we again (see Sections 2 and 3) express our preference for alinear F,-model, since it
simplifies our analytic expressions. So from now on we assume f(v,) to equal a constant f;.
The new variables, with h = 8 = 0, change system (22) into

d?R ~dR

Pl b + R co? o — 20Q(1 - sina) sina — g,
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dR d2  sina _dR

A e

g - YT G T Tosna i (49)
with

R R . dR

R(0)=(0) =Q(0) =1, ad —2(0) =0 (46)

When air resistance is completely neglected (i.e. F(v,) = f(v,) = f; = 0), the equations of
motion admit three first integrals, representing conservation of angular momentum — about
two distinct axes— and conservation of energy. With f = 0, (45) reducesto (we omit the hats):

R = Rv?cos’ a — 2wQsina(l—sina) — g, (47)

w=—2R"wR, (48)

Q =sina(l—sina) wk. (49)
From (48) we find

d 2

Glwr =0 (50)

reflecting conservation of angular momentum about the central axis of the drum. Combination
of (48) and (49) leads to conservation of angular momentum about the axis of spin, or

%{Q(l—sina)+szina}:O. (51)

Another quantity that is preserved in the absence of air friction is the total mechanical energy,
being the sum of kinetic and potential energies. We will, however, not use this quantity here,
becauseit would —due to the essential nonlinear nature of the energy — needlessly complicate
our calculations.

The two remaining conservation laws imply that the most direct way to study the depen-
dency on f is by analyzing the momentary changesin the two physical quantitiesin (50) and
(51). To this end, we introduce three new variables

~

y1 = R%w,  yo=Q(1—sina)+wRksna, y3=R, (52)

which results in the following form of the equations of motion:

g1 = —fu,
g2 = fyys~tsina, (53)
js = —fys+ (1 - 2sin?a)yi?ys > — Syyoys 2sina — g,

and the initial conditions

y1(0) = 42(0) = y3(0) =1,  93(0) =0. (54)
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Figure 12. Residuals from the fitted regression equation log(y1) = bo + bit, With y1 = R?¢.

The first equation in (53) is uncoupled from the rest of the system, and leads — via the
corresponding initial condition in (54) — to the solution

y1 = et = 8/t (55)

This formula expresses the explicit dependency of the total area covered per unit time R
on the air friction coefficient f; and time ¢. By fitting equation (55) to the experimental data
provided by [1], we can expect to obtain an accurate estimate of coefficient f;. A logarithmic
transformation and a simple linear regression model, applied to orbit T11B21, yield the
estimated value

f, =0014sect. (56)

Notethat thisvaluedoesnot differ muchfromthe onein (42). Theresidualsfrom theregression
model are plotted in Figure 12. The apparently small valuesindicate a closefit, but the rough
sine shape does not indicate a truly linear friction model. But it also does not point to atruly
quadratic model, as can be seen in Figure 13, where we used the earlier estimates of f; and
fq to plot log(y1) for both friction models (the dashed curve represents the quadratic model).
We now definitely favour the linear model, because of its elegance and greater ssimplicity.

Substitution of the estimated f; in (56) into the Runge-Kutta procedure does, however, not
lead to an orbit that closely matches the example orbit T11B21. One of the obvious reasons
is that the experimentally determined initial angular velocity appears to be lower than the
theoretical value of 1-13rad/sec in (36): [1] reports the value

wo = 1-09rad/sec. (57)

Figure 14 compares orbit T11B21 to the Runge-Kutta output based on the newly estimated
valuesof f; and wq (the dashed graph representsthe Runge-K uttaoutput). The overall shape of
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Figure 14. A comparison of numerical results and experimental data.

295

the graphs appearsto be quite similar, especially during the first part of the experiment. How-
ever, the second part shows a slightly varying phase shift and a small variation in amplitude.
We would be able to assess the influence of the system parameters and the initial conditions
on the orbit of the ball better if we supplied system (45) with an analytical solution. But since
such asolution is not available, we are forced to use an asymptotic approximation method. In
the next subsection we will present such a method, where the asymptotics will be based on
the small value of f;, or (better) f.
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4.2. ASYMPTOTIC SOLUTIONS

Since the ball moves in an orbit around the centre of the drum, it is only natural to replace
independent variable  in system (53) with the variable ¢. This change of variablesis common
in the treatment of satellite equations (cf. [6], Section 3.4), which have alot in common with
our set of equations. The procedure we shall follow runs more or less aong lines analogous
to those presented in Sections 3.4.1 and 3.4.2 of [6].

With the transformations

U,((,D) = y3_17 2)((,0) = yl_la (58)
we find from (52)
2

o (59)
dt v

Furthermore, to remove the factor sin« in (53)2, we rewrite y» as
y2 =1 —w(p)sina. (60)

This change of variables transforms (53) into the new system

dv G dw ;1
@ - f¥7 % - fav
du 2 2 2 (61)
d—tpz_ U+ — 7S|na<—2 v>+%sm2a<u —z—évw>7
with corresponding initial conditions
du
u(0) = v(0) = 1, w(0) =0, @(0) =0. (62)

Thisnew set of equationsreveal san explicit dependenceon just two dimensionless parameters,
namely f and sin«, which both turn out to be small. The first one expresses, as we have seen
before, the smallness of the resistive force as compared to the gravitational force (cf. [6],
Sect. 3.4.2). We herereplace f by ¢ and note that

e=f=3f/w~88x103 (63)

in accordance with (36)° and the estimate for f; in (56). The second small parameter is due
to deviations in the gravitational force, related to the slope of the drum surface (comparable
to [6], Sect. 3.4.1). Although the two small parameters have quite different physical origins,
their influences on the equations of motion (61) are of the same order of magnitude. Thisis
manifested as follows

%Sinoz = ds¢, %Sinza = doe, (64)
where d1 and d» are coefficients of O(1)-magnitude, i.e. (from (34))

di =269 and dp= 0-550. (65)
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In this way we are able to combine the two small effectsin one small parameter . With these
substitutions, (61) can be rewritten as

b 2w 1

d?u v? v? v,
d_g02+u_ﬁ:€ldl(v_ﬁ +d> U= 3T EUW |

Hence, u obeysthe equation of aweakly nonlinear oscillator (cf. [6]), and thistype of problem
is well adapted to solution by the multiple-variable expansion method. As we aready saw
before, this problem involves two time scales, and therefore — following [6], Section 3.2 —we
introduce the fast and slow (-scale by

(66)

1= (14 c?wo + w3+ - ) (67)
and

P2 = €p, (68)
respectively, where w», ws, . . ., are unknown coefficients (not depending on ). However, as

we are not looking for a solution valid for all possible values of ¢, but only for arange up to
¢ = O(s71Y) (see Figure 6), these w;-coefficients are redundant here, and may be taken zero,
i.e.

wp=wz3=--=0=p1=0. (69)

Furthermore, we assume the variables«, v and w to be functions of both ¢, and ,, and write
them as

u = u(p1,02), v = v(p1, P2), w = w(p1, P2), (70)

thus finally transforming (66) into

dp1 Op2  u?’ dp1 Op2  w’
(71)
0%u O%u » 0%u 2 v?

+2 = —u+t 2 te | dw + dpu — (dy + dp) 5 — Zdgvw| .
Uu u

2

5 +e
Dp1? 01092 dp2

Without loss of generality we may assume ¢1(0) = ¢2(0) = O, yielding the initial
conditions
U(O, O) = U(O, O) =1 w(oa O) =0,
ou ou (72)

2 (0,0) + e—(0,0) = 0.
8901( ) 68902( )
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We now expand u, v, and w into the following asymptotic power series

o0 o0 o0
U ~ Z ui((pla (702)6Z7 v~ Z Ui(SOla (;02)6Z7 w ~ Z wi((pla 902)6Z (73)
i=0 i=0 =0

and we shall try to find solutions for w;, v;, and w; —on a limited (-scale of O(e~1) — by
substituting the series (73) in (71) and (72), and by matching the terms with equal powers
ine.

For the °-terms we thus obtain

Ovg Owg BZUO UOZ
= = _ = — _ 74
d¢p1 7 dp1 ’ O3 vt u?’ (74)

with
U0(07 O) = 'UO(OJ O) = 17 w0(07 O) = 07

(75)
90 6.0 =,
01
whereasthe e!-terms yield
Ovr _ Owo | wo®
91 dp2  ug?’
Owy _ _Owo 1
dp1 dp2  ug’ -
0%uq 0ug vov1  volul
2 — 42 [ Yovr _ voTur
D12 + D105 Uy + w2 g3 —+ d1vo + doug
2
_ Yo _ 2
(da + d2) e, £davowo,
with
u1(0,0) = v1(0,0) = w1(0,0) = 0,
ouq dug
—=(0,0) + —(0,0) = 0. 77
0.0+ 5200 w

From (74)3, with initial conditions (75), we find that both the first and the second derivative
of ug, with respect to ¢1, vanish in 0. From a quadrature of this equation it then follows that
Odup/d¢p1 = Ofor al g1 > 0, and hence we obtain from (74)

uo = Up(p2), vo = Vo(w2), wo = Wo(p2), (78)
such that
Uo®(p2) = Vo*(p2) (79)
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and
Uo(0) = Vo(0) = 1, Wp(0) = 0. (80)

Solutions for Uy, Vo and Wy follow from the e*-equations by requiring that the secular
terms must equal zero (cf. [6]). So the first equation in (76) yields

81}1 dVo V02 ' 2/3
———::-——__'+' ::_‘/ +'Vy/ 81
dp1 de2 - Ug? e &

which would result in alinear, unbounded particular solution for vy, unless
Vo' + W?? =0, (82)

yielding, with 15(0) = 1,

Vo= (1+ 3¢2)° (83)
and
Uo=(1+ %(,02)2. (84)

Analogously, the second equation in (74) leads usto

ow1 dWy 1 , 1 \_2
==~ = W+ (141 , 85
91 dor Uo 0 ( 3%02) (85)

or, with Wy(0) = 0,
Wo = p2(1+ %(,02)_1. (86)
Hence we see that for a complete solution of the °-terms, we need the equations of the

el-approximation (and so on for the higher-order terms). Substitution of (83), (84) and (86)
in (76) resultsin

ov
(9_1 = 0, or v = Vl((pz),
Y1
(87)

s _ 0, or wi= Wi(yp2)
and (where the last two results have already been substituted)

82

WZE +3ug = 3(d1 — 8da)pa(1+ L02)? + 2(1+ L2) " 1W1 = Ri(i02). (88)
The solution of the latter equation reads

u1(ip1,p2) = Ur(sp2) + A1(p2) SN V31 + Bi(ip2) cos V3, (89)
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with

Ui(p2) = 3R1(2), (90)
and, following from (77) and R1(0) = O,

A1(00=-23v3, ~ By(0)=0. (91)

We can determine the functions A1, B1, V1, and W1 by matching the e2-terms, and equating
the secular terms (which lead to unbounded solutionsin ¢1) to zero. This eventually leads to
an explicit expression for the apparently periodic function u;.

The e?-versions of the first two equationsin (71) lead to

ov dv;
8—903- = [_d_(p; +2(1+ %‘PZ)ilVl - %Rl]

—2A18in \/§(,01 — 2B, COS\/§901, (2)2(0, 0) = 0), (92)
ow dw.

— (14 §p2) *(A18inV3p1 + B1cosV3p1),  (w2(0,0) = 0).

The solutions remain bounded only if the secular terms (between sguare brackets) are equal
to zero, hence

2 r_ 1 1 —4
§Rl7 Wl - 3(1+ 3802) Rl7 (93)

which leads, via V1(0) = W1(0) = 0, and R; asin (88), to

1
V' = 2(1+ Z2) Vi = -

Vi(p2) = —3(d1 — 2d2)02?(1 + 3¢2)? (94)
and
__1 _ 6 2 1 -2 _ 6 1
Wil(p2) = —3(d1 — g8d2)p2(1+ 502) (L + 3p2) “ + (d1 — gd2)109(1 + 52).  (95)

By substituting these resultsin (92) and solving the resulting differential equations, we obtain

2/3 2V/3

v2(p1, 2) = Va(p2) + TAl cosv/3p1 — TBlsm\/éSOla (96)

with
2V 3

V2(0) = —TfAl(m =3 (97)

and
V3 1, \—4 :
w2(p1, p2) = Wa(p2) + ?(1 + 2i02) " A1 cOSV3ip1 — Bysinv3p;} (98)
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W(0) = — - A1(0) = & (99)

The above results allow us to write out the e?-terms in (71)° as

0%uy

o 302 = Balvd) + 31+ 3p2) {24151 802V — (4] - Bf) cos2v/Bpn}

—2V/3[A} — §(1+ p2) A1 — w1B1] c0sV3p1

+2V3[B] — 3(1+ p2) 1 B1 + wid4] SnV3py, (100)
where
Ry = ( d ldldz — %—gdg)wz + (8—21 + %d% + 1—25d1d2 — %dg)wg
+1gsda(dy — 2d2)3 — g (d1 — 2d2)p5
—&da(d1 — da) (1 + 3p2)°109(1 + 32) + 2(1 + Fi02) " Va(ep2) (101)
and
V3 V3
wi = ?(dl +3d,) + ?(dl — o) 2. (102)

In this case, the secular terms are the oneswith cos /31 and sin v/3p1. Equating these terms
to zero, wefind

2 1 2 1
Al = 5(1 + §<P2)71A1 + w1By, By = §(1 + §902)7lBl —wiAs. (103)

A straightforward solution of (103) subject to theinitial conditions (91) yields

A1(902) = —%(1 + %(pz)zCOSQl, (104)
Bi(p2) = §(1+ §p2)?sinQy, (105)
where

ﬂ(d Sda) 3. (106)

18

\/_
?(dl + 3do) o2 +

= o) = [ wa(9) 6 =
This ultimately results in the following explicit solution for w1

= §(d1 — 2d2)02(1 — 302) (1 + 5p2) — §V3(1 + 592)°Sin(V3p1 — (p2)). (107)

This completes the solution up to and including the O (£*)-terms. The £2- and higher-order

terms can be found by substitution of results for A; and B; in the expressions for wup, v
and wy, from which we can derive the e3-versions of our equations. We may then determine
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the still unknown functions, such as V;, W etc., by equating the secular terms to zero. This
process involves the same techniques as have been applied to the calculation of lower-order
terms; the results are reported in Appendix A. We have compared our asymptotic results with
the numerically computed resultsin Section 3. This comparison showsthat the differencesare
indeed of order 107® = O(¢~3) for al ¢ € [0, ¢], with ¢; ~ 160rad. This corroborates the
correctness of our assumptions. We leave the conclusionsto the final section.

5. Conclusions

In a deterministic model, the orbit of the ball in the drum is completely determined by the
equations of motion, which are represented by a set of ordinary differential equations (22)
and initia conditions (25). Since this system contains at least two coefficients of unknown
magnitude, an exact solution will not become available until these coefficients will have been
accurately determined by means of complementary experiments. Under the assumption of
linear air friction, part of the system of differential equations can be solved exactly. The
resulting solution (55) can be employed to estimate the unknown air-friction coefficient, viz.
by fitting this solution to the experimental data provided by [1]. We may obtain a rough
impression of the total solution by substituting some preliminary estimates in a Runge-Kutta
routine: the resultsin Figure 7 show a dlightly elliptical, downward spiraling orbit. The slope
of the descent and the periodicity of the elliptical spiral appear to be strongly dependent on the
air-friction force (thisfollowsdirectly from the formulasin Section 4). A reliable prediction of
the outcome hence requires a very accurate estimate; further research will hopefully provide
this estimate.

Under the assumption of a zerospin friction coefficient, the differential equations of (22)
can be expressed in terms of only two dimensionless parameters: « and e, where o isthe angle
of inclination of the drum surface, and ¢ is a simple combination of the air friction coefficient
and the ball’s initial angular velocity (see (63)). As has been shown in (65), these two small
effects can be combined into one small parameter, for which we have taken . The smallness
of ¢ physically representsthe fact that the resistive force F,,, dueto air friction, is much larger
than both the gravitational force £, and the centrifugal force F.. When alinear air friction
model is applied, the system of equations can be solved analytically through expansion of the
solution into an asymptotic power seriesin e. The definitions (52) and (58), together with the
formulasin Appendix A, yield

u=Ro/R = (1+ %902)2 + O(e)
= (14 3ep)? + O(e), (108)
which reveals explicitly a slowly descending orbit, the slope of which is largely determined
by the value of ¢. Higher-order approximations reveal an elliptical spiral
u=Ro/R = (14 3p2)? + $e(d1 — 2d2) (1 — $2%)¢p2

_2_\9@5(1 + 5p2)sin(V3p1 — 1) + O(?)
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= (1+ 302){1+ Fe(d1 — 8d2) (3 — 02) (3+ 2) “p2}

X {1 — 2—\9/§asin(\/§<p1 — Ql)} + O(?). (109)

During onerevolution, and to within O(e)-approximation, s, isconstant, hence (109) strongly
resembles the phase-plane equation of an ordinary ellipse,

1/r =1/c{1—esinb}, (110

with the origin situated at one of thefoci, and the major axis correspondingto 8 = /2. Apart
from a scaling factor, expression (109) represents an elliptical curve with an eccentricity of
2v/3/9¢ + O(e?). This curveis periodic with frequency /3.

If Golden Ten could be considered to be adeterministic game, then the outcome of the game
would depend directly on the point where the ball leaves the rim, and the players could then
predict thefinal outcome by accurately observing just this one point. The exact location of this
point can however be quite hard to determine, since this requires an extrapol ation technique.
A more manageable strategy is to observe one or more points somewhere in the middle of
the orhit: the accuracy of these observations can be increased by interpolating the pattern of
rotating ellipses. The effectiveness of the prediction can be improved by making allowance
for very small disturbances, which will eventually lead to a shift of one or two compartment
numbers. However, if further research points out that a deterministic model does not suffice —
as can in fact already be suspected from Figure 14 — the success of this strategy will be very
meagre. Future research will have to decide the validity of the assumptionsthat were made so
far. Guided by the asymptotic resultsin Section 4, we hopeto attain moreinsight in the nature
of possible disturbances, and how to include these as random factors in an extended model
for the motion of the ball in the drum.

Appendix

A. Asymptotic power series

Thisappendix containsthe coefficient lists of the power seriesin (73). We derived theformulas
by employing the techniques described in Section 4.3. Most of the calculations were done
with the software package Mathematica-386/7.

uo = (1+ 3¢2)°, (A.2)
vo = (1+ 32)°, (A.2)
wo = pa(1+ 3p2) 1, (A3)
u1 = 5(d1 — §d2)p2(1 — 5p2) (1 + 5002) — %@(1 +302)°Sin(V3p1 = 1), (A4
vi = —5(d1 — d2)p2* (1 + §02)?, (A.5)
wy = —3(d1 — &do)02(1+ 502) (1 + §p2) "% + (d1 — &do) log(1 + Fe2), (A.6)
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up =L + (L + 2d2 — Ldidy — 2d3)pp + (& — 2didp + %dd) 3
— 45 (d1 + Zid2) (d1 — &da)p3 735 (da — Ed2)%p5

+Z&dy(dy — Sdp) (1 + 3902) log(1+ 1¢2)

—(1+ Lp2){ M Sin(V3p1 — Q1) + A2 cos(V3p1 — )}

+& (1 + 3p2)cos(2V/3p1 — 20), (A7)
vp = {8+ (B — 2didy + 4£d3)p2 + (& — 2d5 — Zdidy + 1£d3) 5

— g1 (d1 + 6dp) (d1 — 2d2)p3 + 55 (d1 — 2d2)%p3} (1 + Fe2)

+2(d1 — 8d2) (1 + Lp2)*10g(1 + L¢2)

—§u+3¢g<mq¢1n—9ﬁ (A.8)
wz = {§ — Rda(dr — 2d2) 02 — (8 + 55 + 2dady — Bd3) 03

(729 + 135dld2 225d2)‘»02}(1+ 3‘»02) s
+da(dy — 2d2){% — §109(1+ Fp2)} 10g(1 + F¢2)
—2(1+ Lpp) 72 cos(v/3p1 — 1), (A.9)
0 = ?(dl + 3do) i + g(dl — 8do) 3, (A.10)
A= ?(dl + 3do) + 22—\§(d1 — Sda) 02 — %(dl — 2d2) g5
+%d2(1 + 2p2) log(1 + $¢2), (A.11)

Ao =8 — (o + i + g5dadz + 1543) 2
+(73s — gl — Sdade + gdf) 3
+f3(d1 — %dZ)(dl — —dz) 5+ m(dl _ gdz)ztpg

+Zda(dy — 8d2) (1 + 3¢2)° 10g(1 + 3¢2). (A.12)
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